Updated and improved, this revised edition of Michel Barsoum's classic text Fundamentals of Ceramics presents readers with an exceptionally clear and comprehensive introduction to ceramic science. Barsoum offers introductory coverage of ceramics, their structures, and properties, with a distinct emphasis on solid state physics and chemistry. Key equations are derived from first principles to ensure a thorough understanding of the concepts involved. The book divides naturally into two parts. Chapters 1 to 9 consider bonding in ceramics and their resultant physical structures, and the electrical, thermal, and other properties that are dependent on bonding type. The second part (Chapters 11 to 16) deals with those factors that are determined by microstructure, such as fracture and fatigue, and thermal, dielectric, magnetic, and optical properties. Linking the two sections is Chapter 10, which describes sintering, grain growth, and the development of microstructure. Fundamentals of Ceramics is ideally suited to senior undergraduate and graduate students of materials science and engineering and related subjects.
Fundamentals of Ceramics presents readers with an exceptionally clear and comprehensive introduction to ceramic science. This Second Edition updates problems and adds more worked examples, as well as adding new chapter sections on Computational Materials Science and Case Studies. The Computational Materials Science sections describe how today density functional theory and molecular dynamics calculations can shed valuable light on properties, especially ones that are not easy to measure or visualize otherwise such as surface energies, elastic constants, point defect energies, phonon modes, etc. The Case Studies sections focus more on applications, such as solid oxide fuel cells, optical fibers, alumina forming materials, ultra-strong and thin glasses, glass-ceramics, strong and tough ceramics, fiber-reinforced ceramic matrix composites, thermal barrier coatings, the space shuttle tiles, electrochemical impedance spectroscopy, two-dimensional solids, field-assisted and microwave sintering, colossal magnetoresistance, among others.
Suited for courses in ceramics, this text is grounded in the fundamentals of ceramics, with emphasis on solid-state physics and chemistry. Chapters 1-9 deal with the atomic structure, bonding the transport of charged defects and their relationships to conductivity in ceramics, phase diagrams and glasses. Chapters 11-16 deal with specific properties and include mechanical thermal dielectric and optical properties.
Based on the author's lectures to graduate students of geosciences, physics, chemistry and materials science, this didactic handbook covers basic aspects of ceramics such as composition and structure as well as such advanced topics as achieving specific functionalities by choosing the right materials. The focus lies on the thermal transformation processes of natural raw materials to arrive at traditional structural ceramics and on the general physical principles of advanced functional ceramics. The book thus provides practice-oriented information to readers in research, development and engineering on how to understand, make and improve ceramics and derived products, while also serving as a rapid reference for the practitioner. The choice of topics and style of presentation make it equally useful for chemists, materials scientists, engineers and mineralogists.
Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.
This book covers the area of tribology broadly, providing important introductory chapters to fundamentals, processing, and applications of tribology. The book is designed primarily for easy and cohesive understanding for students and practicing scientists pursuing the area of tribology with focus on materials. This book helps students and practicing scientists alike understand that a comprehensive knowledge about the friction and wear properties of advanced materials is essential to further design and development of new materials. The description of the wear micromechanisms of various materials will provide a strong background to the readers as how to design and develop new tribological materials. This book also places importance on the development of new ceramic composites in the context of tribological applications. Some of the key features of the book include: Fundamentals section highlights the salient issues of ceramic processing and mechanical properties of important oxide and non-oxide ceramic systems; State of the art research findings on important ceramic composites are included and an understanding on the behavior of silicon carbide (SiC) based ceramic composites in dry sliding wear conditions is presented as a case study; Erosion wear behavior of ceramics, in which case studies on high temperature erosion behavior of SiC based composites and zirconium diboride (ZrB2) based composites is also covered; Wear behavior of ceramic coatings is rarely discussed in any tribology related books therefore a case study explaining the abrasion wear behavior of WC-Co coating is provided. Finally an appendix chapter is included in which a collection of several types of questions including multiple choice, short answer and long answer are provided.
Ceramic Science and Engineering: Basics to Recent Advancements covers the fundamentals, classification and applications surrounding ceramic engineering. In addition, the book contains an extensive review of the current published literature on established ceramic materials. Other sections present an extensive review of up-to-date research on new innovative ceramic materials and reviews recently published articles, case studies and the latest research outputs. The book will be an essential reference resource for materials scientists, physicists, chemists and engineers, postgraduate students, early career researchers, and industrial researchers working in R&D in the development of ceramic materials. Ceramic engineering deals with the science and technology of creating objects from inorganic and non-metallic materials. It combines the principles of chemistry, physics and engineering. Fiber-optic devices, microprocessors and solar panels are just a few examples of ceramic engineering being applied in everyday life. Advanced ceramics such as alumina, aluminum nitride, zirconia, ZnO, silicon carbide, silicon nitride and titania-based materials, each of which have their own specific characteristics and offer an economic and high-performance alternative to more conventional materials such as glass, metals and plastics are also discussed. Covers environmental barrier ceramic coatings, advanced ceramic conductive fuel cells, processing and machining technology in ceramic and composite materials, photoluminescent ceramic materials, perovskite ceramics and bioinspired ceramic materials Reviews both conventional, established ceramics and new, innovative advanced ceramics Contains an extensive review of the current published literature on established ceramic materials
On 10-15 October 1988 the First International Course on Ceramics took place in Bogota (Colombia), promoted and organized by the Centro Internacional de Fisica (CIF, Bogota) with the endorsement of the International Centre for Theoretical Physics (ICTP, Trieste, Italy) and the Junta del Acuerdo de Cartagena. During the course several lectures were presented by renowned experts in ceramics research and technology, covering fields such as ceramics natural raw materials and processing of classical ceramics, and powder synthesis and processing of advanced ceramics. Additional talks were given on specialist topics including the mechanical behaviour of advanced ceramics and ferro electric ceramics and their applications. It was felt worthwhile to collect most of the material presented at the course in a proceedings volume. It is hoped that this work will be of interest to materials scientists and professionals in industry who may require a first approach to some aspects of ceramics technology and relevant material behaviour connected with its mechanical and electrical functions. The Editor, who also acted as the director of the course, is indebted to colleagues who contributed in the preparation of this work. A special appreciation also is expressed to the CIF Director, Professor F. Eduardo Posada, for his efforts in providing very satisfactory arrange ments for lecturers and participants at the course during their stay in Bogota and for the high standard of organizational work carried out by theCIF.
The first textbook to provide in-depth treatment of electroceramics with emphasis on applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics, and in electro-optics and acousto-optics Electroceramics is a class of ceramic materials used primarily for their electrical properties. This book covers the important topics relevant to this growing field and places great emphasis on devices and applications. It provides sufficient background in theory and mathematics so that readers can gain insight into phenomena that are unique to electroceramics. Each chapter has its own brief introduction with an explanation of how the said content impacts technology. Multiple examples are provided to reinforce the content as well as numerous end-of-chapter problems for students to solve and learn. The book also includes suggestions for advanced study and key words relevant to each chapter. Fundamentals of Electroceramics: Materials, Devices and Applications offers eleven chapters covering: 1.Nature and types of solid materials; 2. Processing of Materials; 3. Methods for Materials Characterization; 4. Binding Forces in Solids and Essential Elements of Crystallography; 5. Dominant Forces and Effects in Electroceramics; 6. Coupled Nonlinear Effects in Electroceramics; 7. Elements of Semiconductor; 8. Electroceramic Semiconductor Devices; 9. Electroceramics and Green Energy; 10.Electroceramic Magnetics; and 11. Electro-optics and Acousto-optics. Provides an in-depth treatment of electroceramics with the emphasis on fundamental theoretical concepts, devices, and applications with focus on non-linear dielectrics Emphasizes applications in microelectronics, magneto-electronics, spintronics, energy storage and harvesting, sensors and detectors, magnetics and in electro-optics and acousto-optics Introductory textbook for students to learn and make an impact on technology Motivates students to get interested in research on various aspects of electroceramics at undergraduate and graduate levels leading to a challenging career path. Includes examples and problem questions within every chapter that prepare students well for independent thinking and learning. Fundamentals of Electroceramics: Materials, Devices and Applications is an invaluable academic textbook that will benefit all students, professors, researchers, scientists, engineers, and teachers of ceramic engineering, electrical engineering, applied physics, materials science, and engineering.
Since the publication of its Third Edition, there have been many notable advances in ceramic engineering. Modern Ceramic Engineering, Fourth Edition serves as an authoritative text and reference for both professionals and students seeking to understand key concepts of ceramics engineering by introducing the interrelationships among the structure, properties, processing, design concepts, and applications of advanced ceramics. Written in the same clear manner that made the previous editions so accessible, this latest edition has been expanded to include new information in almost every chapter, as well as two new chapters that present a variety of relevant case studies. The new edition now includes updated content on nanotechnology, the use of ceramics in integrated circuits, flash drives, and digital cameras, and the role of miniaturization that has made our modern digital devices possible, as well as information on electrochemical ceramics, updated discussions on LEDs, lasers and optical applications, and the role of ceramics in energy and pollution control technologies. It also highlights the increasing importance of modeling and simulation.
With contributions from leading experts in their respective fields, Metal and Ceramic Matrix Composites provides a comprehensive overview of topics on specific materials and trends. It is a subject regularly included as a final year option in materials science courses and is also of much industrial and academic interest. The book begins with a selection of chapters describing the most common commercial applications of composite materials, including those in the aerospace, automotive, and power generation industries. Section 2 outlines manufacturing and processing methods used in the production of composite materials ranging from basic aluminium matrix composites, through particle reinforced composites, to composites using novel matrix fibres such as titanium-silicon carbide and ceramics. Section 3 is devoted to the mechanical behaviour of different matrix materials and structure-property relations, with particular attention paid to failure and fracture mechanisms. The final section considers those new fibres and composite materials currently in development, including high strength copper composites, porous particle composites, active composites, and ceramic nanocomposites.