This book is intended for developers and Big Data engineers who want to know all about HBase at a hands-on level. For in-depth understanding, it would be helpful to have a bit of familiarity with HDFS and MapReduce programming concepts with no prior experience with HBase or similar technologies. This book is also for Big Data enthusiasts and database developers who have worked with other NoSQL databases and now want to explore HBase as another futuristic, scalable database solution in the Big Data space.
Whether you are a novice to ZooKeeper or already have some experience, you will be able to master the concepts of ZooKeeper and its usage with ease. This book assumes you to have some prior knowledge of distributed systems and high-level programming knowledge of C, Java, or Python, but no experience with Apache ZooKeeper is required.
If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. This book is also meant for Hadoop professionals who want to find solutions to the different challenges they come across in their Hadoop projects.
This book takes you on a fantastic journey to discover the attributes of big data using Apache Hive. Key Features Grasp the skills needed to write efficient Hive queries to analyze the Big Data Discover how Hive can coexist and work with other tools within the Hadoop ecosystem Uses practical, example-oriented scenarios to cover all the newly released features of Apache Hive 2.3.3 Book Description In this book, we prepare you for your journey into big data by frstly introducing you to backgrounds in the big data domain, alongwith the process of setting up and getting familiar with your Hive working environment. Next, the book guides you through discovering and transforming the values of big data with the help of examples. It also hones your skills in using the Hive language in an effcient manner. Toward the end, the book focuses on advanced topics, such as performance, security, and extensions in Hive, which will guide you on exciting adventures on this worthwhile big data journey. By the end of the book, you will be familiar with Hive and able to work effeciently to find solutions to big data problems What you will learn Create and set up the Hive environment Discover how to use Hive's definition language to describe data Discover interesting data by joining and filtering datasets in Hive Transform data by using Hive sorting, ordering, and functions Aggregate and sample data in different ways Boost Hive query performance and enhance data security in Hive Customize Hive to your needs by using user-defined functions and integrate it with other tools Who this book is for If you are a data analyst, developer, or simply someone who wants to quickly get started with Hive to explore and analyze Big Data in Hadoop, this is the book for you. Since Hive is an SQL-like language, some previous experience with SQL will be useful to get the most out of this book.
If you want to discover one of the latest tools designed to produce stunning Big Data insights, this book features everything you need to get to grips with your data. Whether you are a data architect, developer, or a business strategist, HDInsight adds value in everything from development, administration, and reporting.
If you have a working knowledge of Hadoop 1.x but want to start afresh with YARN, this book is ideal for you. You will be able to install and administer a YARN cluster and also discover the configuration settings to fine-tune your cluster both in terms of performance and scalability. This book will help you develop, deploy, and run multiple applications/frameworks on the same shared YARN cluster.
A hands-on guide to leveraging NoSQL databases NoSQL databases are an efficient and powerful tool for storing and manipulating vast quantities of data. Most NoSQL databases scale well as data grows. In addition, they are often malleable and flexible enough to accommodate semi-structured and sparse data sets. This comprehensive hands-on guide presents fundamental concepts and practical solutions for getting you ready to use NoSQL databases. Expert author Shashank Tiwari begins with a helpful introduction on the subject of NoSQL, explains its characteristics and typical uses, and looks at where it fits in the application stack. Unique insights help you choose which NoSQL solutions are best for solving your specific data storage needs. Professional NoSQL: Demystifies the concepts that relate to NoSQL databases, including column-family oriented stores, key/value databases, and document databases. Delves into installing and configuring a number of NoSQL products and the Hadoop family of products. Explains ways of storing, accessing, and querying data in NoSQL databases through examples that use MongoDB, HBase, Cassandra, Redis, CouchDB, Google App Engine Datastore and more. Looks at architecture and internals. Provides guidelines for optimal usage, performance tuning, and scalable configurations. Presents a number of tools and utilities relating to NoSQL, distributed platforms, and scalable processing, including Hive, Pig, RRDtool, Nagios, and more.
"HBase: The Definitive Guide" provides the details for evaluating this high-performance, non-relational database, or putting it into practice right away. HBase's adoption rate is beginning to climb, and IT executives are asking pointed questions about this high-capacity database.
If you're looking for a scalable storage solution to accommodate a virtually endless amount of data, this book shows you how Apache HBase can fulfill your needs. As the open source implementation of Google's BigTable architecture, HBase scales to billions of rows and millions of columns, while ensuring that write and read performance remain constant. Many IT executives are asking pointed questions about HBase. This book provides meaningful answers, whether you’re evaluating this non-relational database or planning to put it into practice right away. Discover how tight integration with Hadoop makes scalability with HBase easier Distribute large datasets across an inexpensive cluster of commodity servers Access HBase with native Java clients, or with gateway servers providing REST, Avro, or Thrift APIs Get details on HBase’s architecture, including the storage format, write-ahead log, background processes, and more Integrate HBase with Hadoop's MapReduce framework for massively parallelized data processing jobs Learn how to tune clusters, design schemas, copy tables, import bulk data, decommission nodes, and many other tasks
A beginner's guide to get you up and running with Cassandra, DynamoDB, HBase, InfluxDB, MongoDB, Neo4j, and Redis Key Features Covers the basics of 7 NoSQL databases and how they are used in the enterprises Quick introduction to MongoDB, DynamoDB, Redis, Cassandra, Neo4j, InfluxDB, and HBase Includes effective techniques for database querying and management Book Description This is the golden age of open source NoSQL databases. With enterprises having to work with large amounts of unstructured data and moving away from expensive monolithic architecture, the adoption of NoSQL databases is rapidly increasing. Being familiar with the popular NoSQL databases and knowing how to use them is a must for budding DBAs and developers. This book introduces you to the different types of NoSQL databases and gets you started with seven of the most popular NoSQL databases used by enterprises today. We start off with a brief overview of what NoSQL databases are, followed by an explanation of why and when to use them. The book then covers the seven most popular databases in each of these categories: MongoDB, Amazon DynamoDB, Redis, HBase, Cassandra, InfluxDB, and Neo4j. The book doesn't go into too much detail about each database but teaches you enough to get started with them. By the end of this book, you will have a thorough understanding of the different NoSQL databases and their functionalities, empowering you to select and use the right database according to your needs. What you will learn Understand how MongoDB provides high-performance, high-availability, and automatic scaling Interact with your Neo4j instances via database queries, Python scripts, and Java application code Get familiar with common querying and programming methods to interact with Redis Study the different types of problems Cassandra can solve Work with HBase components to support common operations such as creating tables and reading/writing data Discover data models and work with CRUD operations using DynamoDB Discover what makes InfluxDB a great choice for working with time-series data Who this book is for If you are a budding DBA or a developer who wants to get started with the fundamentals of NoSQL databases, this book is for you. Relational DBAs who want to get insights into the various offerings of popular NoSQL databases will also find this book to be very useful.
Bigdata is one of the most demanding markets in the IT sector. If you are an administrator or a have a passion for knowing the internal configurations of Hadoop, then this book is for you. This book enables a professional to learn about Hadoop in terms of installation, configuration, and management. This book will help the reader to jumpstart with Hadoop frameworks, its eco-system components and slowly progress towards learning the administration part of Hadoop. The level of this book goes from beginner to intermediate with 70% hands-on exercises. Some of the techniques that you will learn include, • Installation and configuration of Hadoop cluster • Performing Hadoop Cluster Upgrade • Understanding and implementing HDFS Federation • Understanding and Implementing High Availability • Implementing HA on a Federated Cluster • Zookeeper CLI • Apache Hive Installation and Security • HBase Multi-master setup • Oozie installation, configuration and job submission • Setting up HDFS Quotas • Setting up HDFS NFS gateway • Understanding and implementing rolling upgrade and much more.
Big Data is the processing and analysis of large amounts of data, the size of which makes it impossible to handle with conventional database and analytical tools. The proliferation of websites, image and video applications, social networks, mobile devices, apps, sensors and other modern devices capable of generating huge amounts of data have made it necessary to develop Big Data tools for their analysis. As for Big Data tools, there is a growing development. Oracle uses Exadata for these purposes, SAS uses Visual Analytics and other tools, Microsoft uses Windows Azure, IBM uses Modeler and other tools based in Hadoop. Oracle includes Hadoop in Oracle Big Data Appliance, Oracle Big Data Connectors and Oracle Loader for Hadoop. SAS incorporates Hadoop in its applications (SAS Base, SAS Data Integration, SAS Enterprise Guide, SAS Enterprise Miner, SAS Visual Analytics, SAS Visual Statistics and others). IBM works with Hadoop in its IBM InfoSphere BigInsights platform (BigInsights) and Microsoft incorporates Hadoop in the Windows Azure platform with its Big Data applications (HDInsight, Polybase and others).