Written by a leading practitioner and teacher in the field of ceramic science and engineering, this outstanding text provides advanced undergraduate- and graduate-level students with a comprehensive, up-to-date Introduction to Phase Equilibria in Ceramic Systems. Building upon a concise definition of the phase rule, the book logically proceeds from one- and two-component systems through increasingly complex systems, enabling students to utilize the phase rule in real applications. Unique because of its emphasis on phase diagrams, timely because of the rising importance of ceramic applications, practical because of its pedagogical approach, Introduction to Phase Equilibria in Ceramic Systems offers end-of-chapter review problems, extensive reading lists, a solid thermodynamic foundation and clear perspectives on the special properties of ceramics as compared to metals.This authoritative volume fills a broad gap in the literature, helping undergraduate- and graduate-level students of ceramic engineering and materials science to approach this demanding subject in a rational, confident fashion. In addition, Introduction to Phase Equilibria in Ceramic Systems serves as a valuable supplement to undergraduate-level metallurgy programs.
Fundamentals of Ceramics presents readers with an exceptionally clear and comprehensive introduction to ceramic science. This Second Edition updates problems and adds more worked examples, as well as adding new chapter sections on Computational Materials Science and Case Studies. The Computational Materials Science sections describe how today density functional theory and molecular dynamics calculations can shed valuable light on properties, especially ones that are not easy to measure or visualize otherwise such as surface energies, elastic constants, point defect energies, phonon modes, etc. The Case Studies sections focus more on applications, such as solid oxide fuel cells, optical fibers, alumina forming materials, ultra-strong and thin glasses, glass-ceramics, strong and tough ceramics, fiber-reinforced ceramic matrix composites, thermal barrier coatings, the space shuttle tiles, electrochemical impedance spectroscopy, two-dimensional solids, field-assisted and microwave sintering, colossal magnetoresistance, among others.
Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, integrated text. Building on a foundation of crystal structures, phase equilibria, defects and the mechanical properties of ceramic materials, students are shown how these materials are processed for a broad diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text. The text concludes with discussions of ceramics in biology and medicine, ceramics as gemstones and the role of ceramics in the interplay between industry and the environment. Extensively illustrated, the text also includes questions for the student and recommendations for additional reading. KEY FEATURES: Combines the treatment of bioceramics, furnaces, glass, optics, pores, gemstones, and point defects in a single text Provides abundant examples and illustrations relating theory to practical applications Suitable for advanced undergraduate and graduate teaching and as a reference for researchers in materials science Written by established and successful teachers and authors with experience in both research and industry
Phase diagrams are "maps" materials scientists often use to design new materials. They define what compounds and solutions are formed and their respective compositions and amounts when several elements are mixed together under a certain temperature and pressure. This monograph is the most comprehensive reference book on experimental methods for phase diagram determination. It covers a wide range of methods that have been used to determine phase diagrams of metals, ceramics, slags, and hydrides. * Extensive discussion on methodologies of experimental measurements and data assessments * Written by experts around the world, covering both traditional and combinatorial methodologies * A must-read for experimental measurements of phase diagrams
Ceramic materials have proven increasingly important in industry and in the fields of electronics, communications, optics, transportation, medicine, energy conversion and pollution control, aerospace, construction, and recreation. Professionals in these fields often require an improved understanding of the specific ceramics materials they are using.
Callister's Materials Science and Engineering: An Introduction promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties. The 10th edition provides new or updated coverage on a number of topics, including: the Materials Paradigm and Materials Selection Charts, 3D printing and additive manufacturing, biomaterials, recycling issues and the Hall effect.
This is a concise, up-to-date book that covers a wide range of important ceramic materials used in modern technology. Chapters provide essential information on the nature of these key ceramic raw materials including their structure, properties, processing methods and applications in engineering and technology. Treatment is provided on materials such as alumina, aluminates, Andalusite, kyanite, and sillimanite. The chapter authors are leading experts in the field of ceramic materials. An ideal text for graduate students and practising engineers in ceramic engineering, metallurgy, and materials science and engineering.
This book provides an introductory treatment of ternary equilibrium diagrams. It presents case studies in the field of metallurgy and material science. It is useful for undergraduates and postgraduates and scientists, who wish to acquire an understanding of ternary phase diagrams.
Polymeric materials include plastics, gels, synthetic fibres, and rubbers. This text uses fundamental principles to classify phase separation phenomena in polymer systems, and describes simple molecular models explaining the observed behaviour.
Solid state ionics is concerned with the science and technology of ions in motion in the solid state. Ions in motion may also involve electrons, depending on the materials and surroundings. These days, solid state ionics is finding an increasing variety of applications. The knowledge of solid state ionics is also extensively mobilized to protect, predict or elongate the lifetime of structural materials in harsh service conditions and to improve the performance reliability of devices. Furthermore, solid state ionics is now being combined with the emerging nanotechnology to produce new knowledge and applications. This book covers the following topics: fuel cells and membranes; batteries; sensors and electrochromics; fundamentals of ionic transport and defect chemistry; cation/anion/mixed ionic electronic conductors. Contents: Fuel Cells and MembranesBatteriesSensors and ElectrochromicsDefect Solid StateIonic Conductors Readership: Physicists, chemists, materials scientists and engineers. Keywords:Solid State Ionics;Fuel Cells;Batteries;Sensors;Electrochromics