This book provides an interesting snapshot of new research within the fields of flexible and soft devices which use porous carbon-based materials. The increase in demand for soft and flexible electronics, electrochemical energy storage/conversion systems, piezoresistive pressure sensors has promoted the development of new strategies for the synthesis and integration of nanoporous carbon (NPC) into flexible and soft polymers and inorganic textures. The structural properties of such NPC materials combined with their mechanical, conductive and catalytic properties, show promising results for the technology they are designed for, which can be useful solutions in many other disciplines. An in-depth discussion of the use of NPC materials in different energy devices is provided in every chapter, while at the same time the knowledge of the reader on the various applications where these materials can be used will be broadened. This book sheds new light on nanoporous carbon-based materials and will be of great interest to graduate students and professionals working in this field.
Chemically Modified Carbon Nanotubes for Commercial Applications Discover the go-to handbook for developers and application-oriented researchers who use carbon nanotubes in real products Carbon nanotubes have held much interest for researchers since their discovery in 1991. Due to their low mass density, large aspect ratio, and unique physical, chemical, and electronic properties, they provide a fertile ground for innovation in nanoscale applications. The development of chemical modifications that can enhance the poor dispersion of carbon nanotubes in solvents and improve interactions with other materials have enabled extensive industrial applications in a variety of fields. As the chemistry of carbon nanotubes and their functionalization becomes better understood, Chemically Modified Carbon Nanotubes for Commercial Applications presents the most recent developments of chemically modified carbon nanotubes and emphasizes the broad appeal for commercial purposes along many avenues of interest. The book reviews their already realized and prospective applications in fields such as electronics, photonics, separation science, food packaging, environmental monitoring and protecting, sensing technology, and biomedicine. By focusing on their commercialization prospects, this resource offers a unique approach to a significant and cutting-edge discipline. In Chemically Modified Carbon Nanotubes for Commercial Applications readers will also find: Case studies that emphasize the information presented in each chapter Each chapter includes important websites and suggested reading materials Discussion of current applications of the relevant methodologies in every chapter A look at future perspectives in each application area to highlight the scope for next steps within the industry Chemically Modified Carbon Nanotubes for Commercial Applications is a valuable reference for material scientists, chemists (especially those focused on environmental concerns), and chemical and materials engineering scientists working in R&D and academia who want to learn more about chemically modified carbon nanotubes for various scalable commercial applications. It is also a useful resource for a broad audience: anyone interested in the fields of nanomaterials, nanoadsorbents, nanomedicine, bioinspired nanomaterials, nanotechnology, nanodevices, nanocomposites, biomedical application of nanomaterials, nano-engineering, and high energy applications.
Metal-Organic Framework Nanocomposites: From Design to Application assembles the latest advances in MOF nanocomposites, emphasizing their design, characterization, manufacturing, and application and offering a wide-ranging view of these materials with exceptional physical and chemical properties. FEATURES Discusses various types of MOF materials, such as polyaniline MOF nanocomposites, magnetic MOF nanocomposites, and carbon nanotube-based MOF nanocomposites Includes chapters on the usage of these materials in pollutant removal, electrochemical devices, photocatalysts, biomedical applications, and other applications Covers different aspects of composite fabrication from energy storage and catalysts, including preparation, design, and characterization techniques Emphasizes the latest technology in the field of manufacturing and design Aimed at researchers, academics, and advanced students in materials science and engineering, this book offers a comprehensive overview and analysis of these extraordinary materials.
This proceedings volume gathers selected papers presented at the Chinese Materials Conference 2017 (CMC2017), held in Yinchuan City, Ningxia, China, on July 06-12, 2017. This book covers a wide range of metamaterials and multifunctional composites, multiferroic materials, amorphous and high-entropy alloys, advanced glass materials and devices, advanced optoelectronic and microelectronic materials, biomaterials, deformation behavior and flow units in metastable materials, advanced fibers and nano-composites, polymer materials, and nanoporous metal materials. The Chinese Materials Conference (CMC) is the most important serial conference of the Chinese Materials Research Society (C-MRS) and has been held each year since the early 1990s. The 2017 installment included 37 Symposia covering four fields: Advances in energy and environmental materials; High performance structural materials; Fundamental research on materials; and Advanced functional materials. More than 5500 participants attended the congress, and the organizers received more than 700 technical papers. Based on the recommendations of symposium organizers and after peer reviewing, 490 papers have been included in the present proceedings, which showcase the latest original research results in the field of materials, achieved by more than 300 research groups at various universities and research institutes.
This book covers the latest research on applications of nanomaterials in the field of energy systems and devices. It provides an overview of the state-of-art research in this rapidly developing field. It discusses the design and fabrication of nanostructured materials and their energy applications. Various topics covered include nanomaterials for perovskite solar cells, transition metal dichalcogenides (TMDs) nanocomposites based supercapacitors, battery materials and technologies, major challenges toward development of efficient thermoelectric materials for energy efficient devices, extraction and experimentation of biodiesel produced from leachate oils of landfills coupled with nano-additives aluminium oxide and copper oxide on diesel engine and many more. It has contributions from world-renowned specialists in the fields of nanomaterials and energy devices. The book will be useful for students, researchers and professionals working in the area of nanomaterials and energy systems & devices.
The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material for wearable/flexible industry applications.
FLEXIBLE SUPERCAPACITORS Comprehensive coverage of the latest advancements in flexible supercapacitors In Flexible Supercapacitors: Materials and Applications, a team of distinguished researchers deliver a comprehensive and insightful exploration of the foundational principles and real-world applications of flexible supercapacitors. This edited volume includes contributions from leading scientists working in the field of flexible supercapacitors. The book systematically summarizes the most recent research in the area, and covers fundamental concepts of electrode materials and devices, including on-chip microsupercapacitors and fiber supercapacitors. The latest progress and advancements in stretchable supercapacitors and healable supercapacitors are also discussed, as are problems and challenges commonly encountered in the development of flexible supercapacitors. The book concludes with suggestions and fresh perspectives on future research in this rapidly developing field. Flexible Supercapacitors: Materials and Applications also offers: A thorough introduction to the fundamentals of supercapacitors, including their materials and devices Comprehensive explorations of flexible fiber supercapacitors and two-dimensional materials for flexible supercapacitors In-depth examinations of flexible supercapacitors with metal oxides-based electrodes and flexible on-chip microsupercapacitors Practical discussions of stretchable and healable supercapacitors, as well as patterned nanostructured electrodes Perfect for researchers in the fields of materials science, physics, and electrical engineering, Flexible Supercapacitors: Materials and Applications is also an ideal reference for developers interested in supercapacitor design, materials, and devices.
Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features: Provides an overview on the supercapacitor application of inorganic-based materials. Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors. Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors. Surveys current applications in supercapacitor energy storage. Explores the new aspects of inorganic materials and next-generation supercapacitor systems.
Research on deformable and wearable electronics has promoted an increasing demand for next-generation power sources with high energy/power density that are low cost, lightweight, thin and flexible. One key challenge in flexible electrochemical energy storage devices is the development of reliable electrodes using open-framework materials with robust structures and high performance. Based on an exploration of 3D porous graphene as a flexible substrate, this book constructs free-standing, binder-free, 3D array electrodes for use in batteries, and demonstrates the reasons for the research transformation from Li to Na batteries. It incorporates the first principles of computational investigation and in situ XRD, Raman observations to systematically reveal the working mechanism of the electrodes and structure evolution during ion insertion/extraction. These encouraging results and proposed mechanisms may accelerate further development of high rate batteries using smart nanoengineering of the electrode materials, which make “Na ion battery could be better than Li ion battery” possible.
A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.
No longer the hidden genius of scientists, nanotechnology is now appearing in products manufactured for everyday life—products that can heal, save lives, be more durable, and last longer. It is also attracting the attention of investors interested in participating in this nano revolution. Nanotechnology: Business Applications and Commercialization is a guide for businesses, investors, and research universities who want to bring nanotechnology products to the commercial market. Showing how academia and business can partner to commercialize nanomaterial research, it delineates business aspects for scientists and highlights opportunities for business professionals. Some of the key topics covered include: Questions to ask before writing a business plan Products consumers are currently using Grant and funding options Standardization that will affect domestic and international production Dangers that must be managed to ensure the safety of nanotechnology Commercialization centers and organizations that provide support Barriers to nanotechnology commercialization Competitive factors that can help bring the international economy more stability Areas where nanotechnology is expanding This timely book outlines how to harness nanotechnology innovations through the application of strong business principles, drive the standards and development, and take the knowledge to the commercial level with business applications. Filled with case studies and useful resources, it helps readers bridge the "valley of death"—the gap period in capital financing that exists between research and the market adoption of new technologies.