Skip to content

Amoscassidy Author

Full PDF eBook Download and Read Full

Menu
  • Home
  • Contact
  • DMCA
  • Privacy Policy
  • Cookie Privacy Policy
  • Terms of Use
Menu

Neural Network Methods for Natural Language Processing

Released on 2017
Neural Network Methods for Natural Language Processing

Author: Yoav Goldberg

Publisher:

ISBN: 1627052984

Category: Natural language processing (Computer science).

Page: 287

View: 661

Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Neural Network Methods in Natural Language Processing

Released on 2017-04-17
Neural Network Methods in Natural Language Processing

Author: Yoav Goldberg

Publisher: Morgan & Claypool Publishers

ISBN: 9781627052955

Category: Computers

Page: 311

View: 149

Neural networks are a family of powerful machine learning models and this book focuses on their application to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Neural Network Methods for Natural Language Processing

Released on 2022-06-01
Neural Network Methods for Natural Language Processing

Author: Yoav Goldberg

Publisher: Springer Nature

ISBN: 9783031021657

Category: Computers

Page: 20

View: 162

Neural networks are a family of powerful machine learning models. This book focuses on the application of neural network models to natural language data. The first half of the book (Parts I and II) covers the basics of supervised machine learning and feed-forward neural networks, the basics of working with machine learning over language data, and the use of vector-based rather than symbolic representations for words. It also covers the computation-graph abstraction, which allows to easily define and train arbitrary neural networks, and is the basis behind the design of contemporary neural network software libraries. The second part of the book (Parts III and IV) introduces more specialized neural network architectures, including 1D convolutional neural networks, recurrent neural networks, conditioned-generation models, and attention-based models. These architectures and techniques are the driving force behind state-of-the-art algorithms for machine translation, syntactic parsing, and many other applications. Finally, we also discuss tree-shaped networks, structured prediction, and the prospects of multi-task learning.

Handbook of Natural Language Processing

Released on 2000-07-25
Handbook of Natural Language Processing

Author: Robert Dale

Publisher: CRC Press

ISBN: 9780824746346

Category: Business & Economics

Page: 1015

View: 370

This study explores the design and application of natural language text-based processing systems, based on generative linguistics, empirical copus analysis, and artificial neural networks. It emphasizes the practical tools to accommodate the selected system.

Neural Networks for Natural Language Processing

Released on 2019-11-29
Neural Networks for Natural Language Processing

Author: S., Sumathi

Publisher: IGI Global

ISBN: 9781799811619

Category: Computers

Page: 227

View: 364

Information in today’s advancing world is rapidly expanding and becoming widely available. This eruption of data has made handling it a daunting and time-consuming task. Natural language processing (NLP) is a method that applies linguistics and algorithms to large amounts of this data to make it more valuable. NLP improves the interaction between humans and computers, yet there remains a lack of research that focuses on the practical implementations of this trending approach. Neural Networks for Natural Language Processing is a collection of innovative research on the methods and applications of linguistic information processing and its computational properties. This publication will support readers with performing sentence classification and language generation using neural networks, apply deep learning models to solve machine translation and conversation problems, and apply deep structured semantic models on information retrieval and natural language applications. While highlighting topics including deep learning, query entity recognition, and information retrieval, this book is ideally designed for research and development professionals, IT specialists, industrialists, technology developers, data analysts, data scientists, academics, researchers, and students seeking current research on the fundamental concepts and techniques of natural language processing.

Neuronale Netze Selbst Programmieren

Released on 2017
Neuronale Netze Selbst Programmieren

Author: Tariq Rashid

Publisher:

ISBN: 1492064041

Category:

Page: 232

View: 455

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Dennoch verstehen nur wenige, wie Neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie Neuronale Netze arbeiten. Dafür brauchen Sie keine tieferen Mathematik-Kenntnisse, denn alle mathematischen Konzepte werden behutsam und mit vielen Illustrationen erläutert. Dann geht es in die Praxis: Sie programmieren Ihr eigenes Neuronales Netz mit Python und bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. Zum Schluss lassen Sie das Netz noch auf einem Raspberry Pi Zero laufen. - Tariq Rashid hat eine besondere Fähigkeit, schwierige Konzepte verständlich zu erklären, dadurch werden Neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Deep Learning Essentials

Released on 2018-01-30
Deep Learning Essentials

Author: Anurag Bhardwaj

Publisher: Packt Publishing Ltd

ISBN: 9781785887772

Category: Computers

Page: 284

View: 479

Get to grips with the essentials of deep learning by leveraging the power of Python Key Features Your one-stop solution to get started with the essentials of deep learning and neural network modeling Train different kinds of neural networks to tackle various problems in Natural Language Processing, computer vision, speech recognition, and more Covers popular Python libraries such as Tensorflow, Keras, and more, along with tips on training, deploying and optimizing your deep learning models in the best possible manner Book Description Deep Learning a trending topic in the field of Artificial Intelligence today and can be considered to be an advanced form of machine learning, which is quite tricky to master. This book will help you take your first steps in training efficient deep learning models and applying them in various practical scenarios. You will model, train, and deploy different kinds of neural networks such as Convolutional Neural Network, Recurrent Neural Network, and will see some of their applications in real-world domains including computer vision, natural language processing, speech recognition, and so on. You will build practical projects such as chatbots, implement reinforcement learning to build smart games, and develop expert systems for image captioning and processing. Popular Python library such as TensorFlow is used in this book to build the models. This book also covers solutions for different problems you might come across while training models, such as noisy datasets, small datasets, and more. This book does not assume any prior knowledge of deep learning. By the end of this book, you will have a firm understanding of the basics of deep learning and neural network modeling, along with their practical applications. What you will learn Get to grips with the core concepts of deep learning and neural networks Set up deep learning library such as TensorFlow Fine-tune your deep learning models for NLP and Computer Vision applications Unify different information sources, such as images, text, and speech through deep learning Optimize and fine-tune your deep learning models for better performance Train a deep reinforcement learning model that plays a game better than humans Learn how to make your models get the best out of your GPU or CPU Who this book is for Aspiring data scientists and machine learning experts who have limited or no exposure to deep learning will find this book to be very useful. If you are looking for a resource that gets you up and running with the fundamentals of deep learning and neural networks, this book is for you. As the models in the book are trained using the popular Python-based libraries such as Tensorflow and Keras, it would be useful to have sound programming knowledge of Python.

Transformers for Natural Language Processing

Released on 2021-01-29
Transformers for Natural Language Processing

Author: Denis Rothman

Publisher: Packt Publishing Ltd

ISBN: 9781800568631

Category: Computers

Page: 384

View: 346

Publisher's Note: A new edition of this book is out now that includes working with GPT-3 and comparing the results with other models. It includes even more use cases, such as casual language analysis and computer vision tasks, as well as an introduction to OpenAI's Codex. Key FeaturesBuild and implement state-of-the-art language models, such as the original Transformer, BERT, T5, and GPT-2, using concepts that outperform classical deep learning modelsGo through hands-on applications in Python using Google Colaboratory Notebooks with nothing to install on a local machineTest transformer models on advanced use casesBook Description The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets. What you will learnUse the latest pretrained transformer modelsGrasp the workings of the original Transformer, GPT-2, BERT, T5, and other transformer modelsCreate language understanding Python programs using concepts that outperform classical deep learning modelsUse a variety of NLP platforms, including Hugging Face, Trax, and AllenNLPApply Python, TensorFlow, and Keras programs to sentiment analysis, text summarization, speech recognition, machine translations, and moreMeasure the productivity of key transformers to define their scope, potential, and limits in productionWho this book is for Since the book does not teach basic programming, you must be familiar with neural networks, Python, PyTorch, and TensorFlow in order to learn their implementation with Transformers. Readers who can benefit the most from this book include experienced deep learning & NLP practitioners and data analysts & data scientists who want to process the increasing amounts of language-driven data.

Natural Language Processing with PyTorch

Released on 2019-01-22
Natural Language Processing with PyTorch

Author: Delip Rao

Publisher: "O'Reilly Media, Inc."

ISBN: 9781491978184

Category: Computers

Page: 256

View: 828

Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems

Proceedings of the Conference on Empirical Methods in Natural Language Processing

Released on 1996
Proceedings of the Conference on Empirical Methods in Natural Language Processing

Author: Eric Brill

Publisher:

ISBN: CORNELL:31924091021885

Category: Computational linguistics

Page: 164

View: 347

Neural Networks for Vision, Speech and Natural Language

Released on 2012-11-05
Neural Networks for Vision, Speech and Natural Language

Author: R. Linggard

Publisher: Springer

ISBN: 9401050414

Category: Technology & Engineering

Page: 442

View: 250

This book is a collection of chapters describing work carried out as part of a large project at BT Laboratories to study the application of connectionist methods to problems in vision, speech and natural language processing. Also, since the theoretical formulation and the hardware realization of neural networks are significant tasks in themselves, these problems too were addressed. The book, therefore, is divided into five Parts, reporting results in vision, speech, natural language, hardware implementation and network architectures. The three editors of this book have, at one time or another, been involved in planning and running the connectionist project. From the outset, we were concerned to involve the academic community as widely as possible, and consequently, in its first year, over thirty university research groups were funded for small scale studies on the various topics. Co-ordinating such a widely spread project was no small task, and in order to concentrate minds and resources, sets of test problems were devised which were typical of the application areas and were difficult enough to be worthy of study. These are described in the text, and constitute one of the successes of the project.

Natural Language Processing Recipes

Released on 2019-01-29
Natural Language Processing Recipes

Author: Akshay Kulkarni

Publisher: Apress

ISBN: 9781484242674

Category: Computers

Page: 253

View: 724

Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You’ll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real world, making your development time quicker and more efficient. What You Will LearnApply NLP techniques using Python libraries such as NLTK, TextBlob, spaCy, Stanford CoreNLP, and many more Implement the concepts of information retrieval, text summarization, sentiment analysis, and other advanced natural language processing techniques. Identify machine learning and deep learning techniques for natural language processing and natural language generation problems Who This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing through coding exercises.

Full Books

  • What’s Where on Earth Atlas
  • Music Business Handbook and Career Guide
  • Integrative Therapies in Rehabilitation
  • Records Management and Knowledge Mobilisation
  • World Windows 2 (Science): Seasons
  • Postnatal Care
  • Fuzzy Analysis of Driving Crisis
  • Runway Dust
  • Frontiers of the Afterlife
  • Introduction to Microfabrication
  • Service Life Prediction of Polymeric Materials
  • Life in Occupied Guernsey
  • The Nature of Statistical Learning Theory
  • Stone Fox Bride
  • England and the Crusades, 1095-1588
  • Chin Na in Groundfighting
  • Teaching Embodied
  • Biographies of Homeopathic Physicians, Volume 17
  • North Shore Railway [microform]
  • Small Steps, Big Changes
©2023 Amoscassidy Author | Design: Newspaperly WordPress Theme