This thesis contributes to the development of a cooperative control theory for homogeneous and heterogeneous multi-agent systems consisting of identical and non-identical dynamical agents, respectively. The goal is to explain fundamental effects of non-identical agent dynamics on the behavior of a distributed system and, primarily, to develop suitable control design methods for a wide range of multi-agent coordination problems. Output synchronization problems as well as cooperative disturbance rejection and reference tracking problems in multi-agent systems are investigated. Suitable controller design methods for networks consisting of identical or non-identical linear time-invariant systems, linear parameter-varying systems, and selected classes of nonlinear systems are developed. These controller design methods provide a solution to a wide variety of distributed coordination and cooperative control scenarios.
This book celebrates Professor Mathukumalli Vidyasagar’s outstanding achievements in systems, control, robotics, statistical learning, computational biology, and allied areas. The contributions in the book summarize the content of invited lectures given at the workshop “Emerging Applications of Control and Systems Theory” (EACST17) held at the University of Texas at Dallas in late September 2017 in honor of Professor Vidyasagar’s seventieth birthday. These contributions are the work of twenty-eight distinguished speakers from eight countries and are related to Professor Vidyasagar’s areas of research. This Festschrift volume will remain as a permanent scientific record of this event.
The paradigm of ‘multi-agent’ cooperative control is the challenge frontier for new control system application domains, and as a research area it has experienced a considerable increase in activity in recent years. This volume, the result of a UCLA collaborative project with Caltech, Cornell and MIT, presents cutting edge results in terms of the “dimensions” of cooperative control from leading researchers worldwide. This dimensional decomposition allows the reader to assess the multi-faceted landscape of cooperative control. Cooperative Control of Distributed Multi-Agent Systems is organized into four main themes, or dimensions, of cooperative control: distributed control and computation, adversarial interactions, uncertain evolution and complexity management. The military application of autonomous vehicles systems or multiple unmanned vehicles is primarily targeted; however much of the material is relevant to a broader range of multi-agent systems including cooperative robotics, distributed computing, sensor networks and data network congestion control. Cooperative Control of Distributed Multi-Agent Systems offers the reader an organized presentation of a variety of recent research advances, supporting software and experimental data on the resolution of the cooperative control problem. It will appeal to senior academics, researchers and graduate students as well as engineers working in the areas of cooperative systems, control and optimization.
A detailed and systematic introduction to the distributed cooperative control of multi-agent systems from a theoretical, network perspective Features detailed analysis and discussions on the distributed cooperative control and dynamics of multi-agent systems Covers comprehensively first order, second order and higher order systems, swarming and flocking behaviors Provides a broad theoretical framework for understanding the fundamentals of distributed cooperative control
Cooperative Control of Multi-Agent Systems extends optimal control and adaptive control design methods to multi-agent systems on communication graphs. It develops Riccati design techniques for general linear dynamics for cooperative state feedback design, cooperative observer design, and cooperative dynamic output feedback design. Both continuous-time and discrete-time dynamical multi-agent systems are treated. Optimal cooperative control is introduced and neural adaptive design techniques for multi-agent nonlinear systems with unknown dynamics, which are rarely treated in literature are developed. Results spanning systems with first-, second- and on up to general high-order nonlinear dynamics are presented. Each control methodology proposed is developed by rigorous proofs. All algorithms are justified by simulation examples. The text is self-contained and will serve as an excellent comprehensive source of information for researchers and graduate students working with multi-agent systems.
Examines new cooperative control methodologies tailored to real-world applications in various domains such as in communication systems, physics systems, and multi-robotic systems Provides the fundamental mechanism for solving collective behaviors in naturally-occurring systems as well as cooperative behaviors in man-made systems Discusses cooperative control methodologies using real-world applications, including semi-conductor laser arrays, mobile sensor networks, and multi-robotic systems Includes results from the research group at the Stevens Institute of Technology to show how advanced control technologies can impact challenging issues, such as high energy systems and oil spill monitoring
Stability theory has allowed us to study both qualitative and quantitative properties of dynamical systems, and control theory has played a key role in designing numerous systems. Contemporary sensing and communication n- works enable collection and subscription of geographically-distributed inf- mation and such information can be used to enhance signi?cantly the perf- manceofmanyofexisting systems. Throughasharedsensing/communication network,heterogeneoussystemscannowbecontrolledtooperaterobustlyand autonomously; cooperative control is to make the systems act as one group and exhibit certain cooperative behavior, and it must be pliable to physical and environmental constraints as well as be robust to intermittency, latency and changing patterns of the information ?ow in the network. This book attempts to provide a detailed coverage on the tools of and the results on analyzing and synthesizing cooperative systems. Dynamical systems under consideration can be either continuous-time or discrete-time, either linear or non-linear, and either unconstrained or constrained. Technical contents of the book are divided into three parts. The ?rst part consists of Chapters 1, 2, and 4. Chapter 1 provides an overview of coope- tive behaviors, kinematical and dynamical modeling approaches, and typical vehicle models. Chapter 2 contains a review of standard analysis and design tools in both linear control theory and non-linear control theory. Chapter 4 is a focused treatment of non-negativematrices and their properties,multipli- tive sequence convergence of non-negative and row-stochastic matrices, and the presence of these matrices and sequences in linear cooperative systems.
This book brings together emerging objectives and paradigms in the control of both AC and DC microgrids; further, it facilitates the integration of renewable-energy and distribution systems through localization of generation, storage and consumption. The control objectives in a microgrid are addressed through the hierarchical control structure. After providing a comprehensive survey on the state of the art in microgrid control, the book goes on to address the most recent control schemes for both AC and DC microgrids, which are based on the distributed cooperative control of multi-agent systems. The cooperative control structure discussed distributes the co-ordination and optimization tasks across all distributed generators. This does away with the need for a central controller, and the control system will not collapse in response to the outage of a single unit. This avoids adverse effects on system flexibility and configurability, as well as the reliability concerns in connection with single points of failure that arise in traditional, centralized microgrid control schemes. Rigorous proofs develop each control methodology covered in the book, and simulation examples are provided to justify all of the proposed algorithms. Given its extensive yet self-contained content, the book offers a comprehensive source of information for graduate students, academic researchers, and practicing engineers working in the field of microgrid control and optimization.
This thesis investigates the role of duality and the use of approximation methods in cooperative optimization and control. Concerning cooperative optimization, a general algorithm for convex optimization in networks with asynchronous communication is presented. Based on the idea of polyhedral approximations, a family of distributed algorithms is developed to solve a variety of distributed decision problems, ranging from semi-definite and robust optimization problems up to distributed model predictive control. Optimization theory, and in particular duality theory, are shown to be central elements also in cooperative control. This thesis establishes an intimate relation between passivity-based cooperative control and network optimization theory. The presented results provide a complete duality theory for passivity-based cooperative control and lead the way to novel analysis tools for complex dynamic phenomena. In this way, this thesis presents theoretical insights and algorithmic approaches for cooperative optimization and control, and emphasizes the role of convexity and duality in this field.
This book addresses problems in the modeling, detection, and control of emergent behaviors and task coordination in multiagent systems. It presents a unified solution to such problems in terms of distributed estimation, distributed control, and optimization of interaction topologies and dynamics. Four aspects of the technical solutions in the book are presented: First, the impact of interaction dynamics on the convergence conditions related to interaction topologies is discussed, utilizing a discontinuous cooperative control algorithm of updated design. Second, distributed least-squares and Kalman filtering algorithms for agents with limited interactions are elaborated upon. Third, a general framework of distributed nonlinear control is established, and distributed adaptive control for nonlinear systems with more general uncertainties is presented. Based on the proposed framework, a distributed nonlinear controller is designed to deal with task coordination of robotic systems with nonholonomic constraints. Finally, the problem of optimal multiagent task coordination is addressed and solutions based on approximate dynamic programming and approximate distributed gradient estimation are presented. Emergent Behavior Detection and Task Coordination for Multiagent Systems is of interest to practicing engineers in areas such as robotics and cyber-physical systems, researchers in the field of systems, controls, and robotics, and senior undergraduate and graduate students.
Far from being separate entities, many social and engineering systems can be considered as complex network systems (CNSs) associated with closely linked interactions with neighbouring entities such as the Internet and power grids. Roughly speaking, a CNS refers to a networking system consisting of lots of interactional individuals, exhibiting fascinating collective behaviour that cannot always be anticipated from the inherent properties of the individuals themselves. As one of the most fundamental examples of cooperative behaviour, consensus within CNSs (or the synchronization of complex networks) has gained considerable attention from various fields of research, including systems science, control theory and electrical engineering. This book mainly studies consensus of CNSs with dynamics topologies - unlike most existing books that have focused on consensus control and analysis for CNSs under a fixed topology. As most practical networks have limited communication ability, switching graphs can be used to characterize real-world communication topologies, leading to a wider range of practical applications. This book provides some novel multiple Lyapunov functions (MLFs), good candidates for analysing the consensus of CNSs with directed switching topologies, while each chapter provides detailed theoretical analyses according to the stability theory of switched systems. Moreover, numerical simulations are provided to validate the theoretical results. Both professional researchers and laypeople will benefit from this book.
Modern complex large-scale dynamical systems exist in virtually every aspect of science and engineering, and are associated with a wide variety of technological, environmental, and social phenomena. This book develops stability analysis and control design framework for nonlinear large-scale interconnected dynamical systems.