Skip to content

Amoscassidy Author

Full PDF eBook Download and Read Full

Menu
  • Home
  • Contact
  • DMCA
  • Privacy Policy
  • Cookie Privacy Policy
  • Terms of Use
Menu

Machine Learning with R Quick Start Guide

Released on 2019-03-29
Machine Learning with R Quick Start Guide

Author: Iván Pastor Sanz

Publisher: Packt Publishing Ltd

ISBN: 9781838647056

Category: Computers

Page: 250

View: 134

This book is ideal for people wanting to get up-and-running with the core concepts of machine learning using R 3.5. This book follows a step-by-step approach to implementing an end-to-end pipeline, addressing data collection and processing, various types of data analysis, and machine learning use cases.

Machine Learning with Go Quick Start Guide

Released on 2019-05-31
Machine Learning with Go Quick Start Guide

Author: Michael Bironneau

Publisher: Packt Publishing Ltd

ISBN: 9781838551650

Category: Computers

Page: 168

View: 771

This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and Clustering Key Features Your handy guide to building machine learning workflows in Go for real-world scenarios Build predictive models using the popular supervised and unsupervised machine learning techniques Learn all about deployment strategies and take your ML application from prototype to production ready Book Description Machine learning is an essential part of today's data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology. This book will teach you how to efficiently develop machine learning applications in Go. The book starts with an introduction to machine learning and its development process, explaining the types of problems that it aims to solve and the solutions it offers. It then covers setting up a frictionless Go development environment, including running Go interactively with Jupyter notebooks. Finally, common data processing techniques are introduced. The book then teaches the reader about supervised and unsupervised learning techniques through worked examples that include the implementation of evaluation metrics. These worked examples make use of the prominent open-source libraries GoML and Gonum. The book also teaches readers how to load a pre-trained model and use it to make predictions. It then moves on to the operational side of running machine learning applications: deployment, Continuous Integration, and helpful advice for effective logging and monitoring. At the end of the book, readers will learn how to set up a machine learning project for success, formulating realistic success criteria and accurately translating business requirements into technical ones. What you will learn Understand the types of problem that machine learning solves, and the various approaches Import, pre-process, and explore data with Go to make it ready for machine learning algorithms Visualize data with gonum/plot and Gophernotes Diagnose common machine learning problems, such as overfitting and underfitting Implement supervised and unsupervised learning algorithms using Go libraries Build a simple web service around a model and use it to make predictions Who this book is for This book is for developers and data scientists with at least beginner-level knowledge of Go, and a vague idea of what types of problem Machine Learning aims to tackle. No advanced knowledge of Go (and no theoretical understanding of the math that underpins Machine Learning) is required.

Learning Bayesian Models with R

Released on 2015-10-28
Learning Bayesian Models with R

Author: Dr. Hari M. Koduvely

Publisher: Packt Publishing Ltd

ISBN: 9781783987610

Category: Computers

Page: 168

View: 534

Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. To understand this book, it would be useful if you have basic knowledge of probability theory and analytics and some familiarity with the programming language R. What You Will Learn Set up the R environment Create a classification model to predict and explore discrete variables Get acquainted with Probability Theory to analyze random events Build Linear Regression models Use Bayesian networks to infer the probability distribution of decision variables in a problem Model a problem using Bayesian Linear Regression approach with the R package BLR Use Bayesian Logistic Regression model to classify numerical data Perform Bayesian Inference on massively large data sets using the MapReduce programs in R and Cloud computing In Detail Bayesian Inference provides a unified framework to deal with all sorts of uncertainties when learning patterns form data using machine learning models and use it for predicting future observations. However, learning and implementing Bayesian models is not easy for data science practitioners due to the level of mathematical treatment involved. Also, applying Bayesian methods to real-world problems requires high computational resources. With the recent advances in computation and several open sources packages available in R, Bayesian modeling has become more feasible to use for practical applications today. Therefore, it would be advantageous for all data scientists and engineers to understand Bayesian methods and apply them in their projects to achieve better results. Learning Bayesian Models with R starts by giving you a comprehensive coverage of the Bayesian Machine Learning models and the R packages that implement them. It begins with an introduction to the fundamentals of probability theory and R programming for those who are new to the subject. Then the book covers some of the important machine learning methods, both supervised and unsupervised learning, implemented using Bayesian Inference and R. Every chapter begins with a theoretical description of the method explained in a very simple manner. Then, relevant R packages are discussed and some illustrations using data sets from the UCI Machine Learning repository are given. Each chapter ends with some simple exercises for you to get hands-on experience of the concepts and R packages discussed in the chapter. The last chapters are devoted to the latest development in the field, specifically Deep Learning, which uses a class of Neural Network models that are currently at the frontier of Artificial Intelligence. The book concludes with the application of Bayesian methods on Big Data using the Hadoop and Spark frameworks. Style and approach The book first gives you a theoretical description of the Bayesian models in simple language, followed by details of its implementation in the R package. Each chapter has illustrations for the use of Bayesian model and the corresponding R package, using data sets from the UCI Machine Learning repository. Each chapter also contains sufficient exercises for you to get more hands-on practice.

Intelligent Systems and Applications

Released on 2020-08-25
Intelligent Systems and Applications

Author: Kohei Arai

Publisher: Springer Nature

ISBN: 9783030551872

Category: Technology & Engineering

Page: 794

View: 162

The book Intelligent Systems and Applications - Proceedings of the 2020 Intelligent Systems Conference is a remarkable collection of chapters covering a wider range of topics in areas of intelligent systems and artificial intelligence and their applications to the real world. The Conference attracted a total of 545 submissions from many academic pioneering researchers, scientists, industrial engineers, students from all around the world. These submissions underwent a double-blind peer review process. Of those 545 submissions, 177 submissions have been selected to be included in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have enabled a larger number of problems to be tackled more effectively.This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for such an international conference which serves as a venue to report on up-to-the-minute innovations and developments. This book collects both theory and application based chapters on all aspects of artificial intelligence, from classical to intelligent scope. We hope that readers find the volume interesting and valuable; it provides the state of the art intelligent methods and techniques for solving real world problems along with a vision of the future research.

Kibana 7 Quick Start Guide

Released on 2019-01-31
Kibana 7 Quick Start Guide

Author: Anurag Srivastava

Publisher: Packt Publishing Ltd

ISBN: 9781789808490

Category: Computers

Page: 172

View: 286

A quick start guide to visualize your Elasticsearch data Key Features Your hands-on guide to visualizing the Elasticsearch data as well as navigating the Elastic stack Work with different Kibana plugins and create effective machine learning jobs using Kibana Build effective dashboards and reports without any hassle Book Description The Elastic Stack is growing rapidly and, day by day, additional tools are being added to make it more effective. This book endeavors to explain all the important aspects of Kibana, which is essential for utilizing its full potential. This book covers the core concepts of Kibana, with chapters set out in a coherent manner so that readers can advance their learning in a step-by-step manner. The focus is on a practical approach, thereby enabling the reader to apply those examples in real time for a better understanding of the concepts and to provide them with the correct skills in relation to the tool. With its succinct explanations, it is quite easy for a reader to use this book as a reference guide for learning basic to advanced implementations of Kibana. The practical examples, such as the creation of Kibana dashboards from CSV data, application RDBMS data, system metrics data, log file data, APM agents, and search results, can provide readers with a number of different drop-off points from where they can fetch any type of data into Kibana for the purpose of analysis or dashboarding. What you will learn Explore how Logstash is configured to fetch CSV data Understand how to create index patterns in Kibana Become familiar with how to apply filters on data Discover how to create ML jobs Explore how to analyze APM data from APM agents Get to grips with how to save, share, inspect, and edit visualizations Understand how to find an anomaly in data Who this book is for Kibana 7 Quick Start Guide is for developers new to Kibana who want to learn the fundamentals of using the tool for visualization, as well as existing Elastic developers.

Data Science Quick Reference Manual – Part I

Released on 2022-12-09
Data Science Quick Reference Manual – Part I

Author: Mario A. B. Capurso

Publisher: Mario Capurso

ISBN:

Category: Computers

Page: 228

View: 438

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. First of a series of books, it covers methodological aspects, data acquisition, management and cleaning, analysis and visualization. It describes the CRISP DM methodology, the working phases, the success criteria, the languages and the environments that can be used, the application libraries. Since this book uses Orange for the application aspects, its installation and widgets are described. Dealing with data acquisition, the book describes data sources, the acceleration techniques, the discretization methods, the security standards, the types and representations of the data, the techniques for managing corpus of texts such as bag-of-words, word-count , TF-IDF, n-grams, lexical analysis, syntactic analysis, semantic analysis, stop word filtering, stemming, techniques for representing and processing images, sampling, filtering, web scraping techniques. Examples are given in Orange. Data quality dimensions are analysed, and then the book considers algorithms for entity identification, truth discovery, rule-based cleaning, missing and repeated value handling, categorical value encoding, outlier cleaning, and errors, inconsistency management, scaling, integration of data from various sources and classification of open sources, application scenarios and the use of databases, datawarehouses, data lakes and mediators, data schema mapping and the role of RDF, OWL and SPARQL, transformations. Examples are given in Orange. The book is accompanied by supporting material and it is possible to download the project samples in Orange and sample data.

Data Science Quick Reference Manual – Part II

Released on 2022-12-09
Data Science Quick Reference Manual – Part II

Author: Mario A. B. Capurso

Publisher: Mario Capurso

ISBN:

Category: Computers

Page: 222

View: 650

This work follows the 2021 curriculum of the Association for Computing Machinery for specialists in Data Sciences, with the aim of producing a manual that collects notions in a simplified form, facilitating a personal training path starting from specialized skills in Computer Science or Mathematics or Statistics. It has a bibliography with links to quality material but freely usable for your own training and contextual practical exercises. Second of a series of books, it covers methodological aspects, analysis and visualization. It describes the CRISP DM methodology, the working phases, the success criteria, the languages and the environments that can be used, the application libraries. Since this book uses Orange for the application aspects, its installation and widgets are described. In visualization, historical notes are made, and next the book describes the characteristics of an effective visualization, the types of messages that can be conveyed, the Grammar of Graphics, the use of a graph and a dashboard, the software and libraries that can be used, the role and use of color. 55 types of graphs are then analyzed, reporting meaning, use, examples and visual dimensions also with a vocabulary of graphs and summary tables. Examples are given in Orange and the possible use of Python with Orange is explained. Visualization-based inference is discussed, exploratory and confirmatory analysis is defined and techniques are reported. The book is accompanied by supporting material and it is possible to download the project samples in Orange and sample data.

Machine Learning Quick Reference

Released on 2019-01-31
Machine Learning Quick Reference

Author: Rahul Kumar

Publisher: Packt Publishing Ltd

ISBN: 9781788831611

Category: Computers

Page: 294

View: 402

Your hands-on reference guide to developing, training, and optimizing your machine learning models Key FeaturesYour guide to learning efficient machine learning processes from scratchExplore expert techniques and hacks for a variety of machine learning conceptsWrite effective code in R, Python, Scala, and Spark to solve all your machine learning problemsBook Description Machine learning makes it possible to learn about the unknowns and gain hidden insights into your datasets by mastering many tools and techniques. This book guides you to do just that in a very compact manner. After giving a quick overview of what machine learning is all about, Machine Learning Quick Reference jumps right into its core algorithms and demonstrates how they can be applied to real-world scenarios. From model evaluation to optimizing their performance, this book will introduce you to the best practices in machine learning. Furthermore, you will also look at the more advanced aspects such as training neural networks and work with different kinds of data, such as text, time-series, and sequential data. Advanced methods and techniques such as causal inference, deep Gaussian processes, and more are also covered. By the end of this book, you will be able to train fast, accurate machine learning models at your fingertips, which you can easily use as a point of reference. What you will learnGet a quick rundown of model selection, statistical modeling, and cross-validationChoose the best machine learning algorithm to solve your problemExplore kernel learning, neural networks, and time-series analysisTrain deep learning models and optimize them for maximum performanceBriefly cover Bayesian techniques and sentiment analysis in your NLP solutionImplement probabilistic graphical models and causal inferencesMeasure and optimize the performance of your machine learning modelsWho this book is for If you’re a machine learning practitioner, data scientist, machine learning developer, or engineer, this book will serve as a reference point in building machine learning solutions. You will also find this book useful if you’re an intermediate machine learning developer or data scientist looking for a quick, handy reference to all the concepts of machine learning. You’ll need some exposure to machine learning to get the best out of this book.

Machine Learning Techniques for Smart City Applications: Trends and Solutions

Released on 2022-10-21
Machine Learning Techniques for Smart City Applications: Trends and Solutions

Author: D. Jude Hemanth

Publisher: Springer Nature

ISBN: 9783031088599

Category: Computers

Page: 227

View: 469

This book discusses the application of different machine learning techniques to the sub-concepts of smart cities such as smart energy, transportation, waste management, health, infrastructure, etc. The focus of this book is to come up with innovative solutions in the above-mentioned issues with the purpose of alleviating the pressing needs of human society. This book includes content with practical examples which are easy to understand for readers. It also covers a multi-disciplinary field and, consequently, it benefits a wide readership including academics, researchers, and practitioners.

SQL Server 2017 Developer’s Guide

Released on 2018-03-16
SQL Server 2017 Developer’s Guide

Author: William Durkin

Publisher: Packt Publishing Ltd

ISBN: 9781788479936

Category: Computers

Page: 816

View: 915

Build smarter and efficient database application systems for your organization with SQL Server 2017 Key Features Build database applications by using the development features of SQL Server 2017 Work with temporal tables to get information stored in a table at any time Use adaptive querying to enhance the performance of your queries Book Description Microsoft SQL Server 2017 is the next big step in the data platform history of Microsoft as it brings in the power of R and Python for machine learning and containerization-based deployment on Windows and Linux. Compared to its predecessor, SQL Server 2017 has evolved into Machine Learning with R services for statistical analysis and Python packages for analytical processing. This book prepares you for more advanced topics by starting with a quick introduction to SQL Server 2017’s new features and a recapitulation of the possibilities you may have already explored with previous versions of SQL Server. The next part introduces you to enhancements in the Transact-SQL language and new database engine capabilities and then switches to a completely new technology inside SQL Server: JSON support. We also take a look at the Stretch database, security enhancements, and temporal tables. Furthermore, the book focuses on implementing advanced topics, including Query Store, columnstore indexes, and In-Memory OLTP. Towards the end of the book, you’ll be introduced to R and how to use the R language with Transact-SQL for data exploration and analysis. You’ll also learn to integrate Python code in SQL Server and graph database implementations along with deployment options on Linux and SQL Server in containers for development and testing. By the end of this book, you will have the required information to design efficient, high-performance database applications without any hassle. What you will learn Explore the new development features introduced in SQL Server 2017 Identify opportunities for In-Memory OLTP technology Use columnstore indexes to get storage and performance improvements Exchange JSON data between applications and SQL Server Use the new security features to encrypt or mask the data Control the access to the data on the row levels Discover the potential of R and Python integration Model complex relationships with the graph databases in SQL Server 2017 Who this book is for Database developers and solution architects looking to design efficient database applications using SQL Server 2017 will find this book very useful. In addition, this book will be valuable to advanced analysis practitioners and business intelligence developers. Database consultants dealing with performance tuning will get a lot of useful information from this book as well. Some basic understanding of database concepts and T-SQL is required to get the best out of this book.

The Semantic Web

Released on 2020-05-27
The Semantic Web

Author: Andreas Harth

Publisher: Springer Nature

ISBN: 9783030494612

Category: Computers

Page: 682

View: 880

This book constitutes the refereed proceedings of the 17th International Semantic Web Conference, ESWC 2020, held in Heraklion, Crete, Greece.* The 39 revised full papers presented were carefully reviewed and selected from 166 submissions. The papers were submitted to three tracks: the research track, the resource track and the in-use track. These tracks showcase research and development activities, services and applications, and innovative research outcomes making their way into industry. The research track caters for both long standing and emerging research topics in the form of the following subtracks: ontologies and reasoning; natural language processing and information retrieval; semantic data management and data infrastructures; social and human aspects of the Semantic Web; machine learning; distribution and decentralization; science of science; security, privacy, licensing and trust; knowledge graphs; and integration, services and APIs. *The conference was held virtually due to the COVID-19 pandemic. Chapter ‘Piveau: A Large-scale Oopen Data Management Platform based on Semantic Web Technologies’ is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

R Programming

Released on 2019-09-30
R Programming

Author: Daniel Bell

Publisher:

ISBN: 1696769647

Category:

Page: 170

View: 534

R is a programming language and software environment for statistical analysis, graphics representation, and reporting. If you are trying to understand the R programming language as a beginner, this short book will give you enough understanding of almost all the concepts of the R language. The author will guide you through examples, how to program in R and how to use R for effective data analysis.Buy your copy Now! Book ObjectivesThis book is about R programming. The following are the objectives of the author: To familiarize you with the basics of R programming language. To help you understand the various fields where R can be applied and its use cases in each field. To equip you with R programming skills, both beginner and advanced skills. To introduce you to R programming for data analysis. To introduce you to R programming for machine learning. To help you understand and appreciate the power of R in statistical computing, data analysis, and scientific research. Who this Book is for? Anybody who is a complete beginner to R Programming. Anybody in need of advancing their R Programming skills. Professionals in computer programming. Professors, lecturers or tutors who are looking to find better ways to explain R programming to their students in the simplest and easiest way. Students and academicians, especially those focusing on R, Data Analysis, Machine Learning, computer science, and Databases development. RequirementsThe author expects you to have a computer installed with an operating system such as Linux, Windows or Mac OS X. What is inside the book? R BASICS R DATA TYPES R VARIABLES AND CONSTANTS R OPERATORS DECISION MAKING IN R R LOOPS R FUNCTIONS R CLASSES AND OBJECTS R FOR DATA SCIENCE R FOR MACHINE LEARNING From the Back Cover.R programming language is one of the most popular languages used by statisticians, data analysts, researchers to retrieve, clean, analyze, visualize and present data. This is a comprehensive book on how to get started with R programming, why you should learn it and how you can learn it. Daniel Bell begins by introducing the readers to the foundations of the R programming language. The aim is to help you understand, how the R interpreter works, the origin of the name R, how to set up the R programming environment, etc. The author has discussed the process of installing R on Windows, Linux and Mac OS. Moreover, the author has explored the basics of R programming including writing comments, using the R console, creating R script files, etc. The various features provided by R have been discussed in depth, including data types, variables, loops, decision making, functions, operators, classes, and objects, etc. The author has also discussed R for data science and R for machine learning. The book has been organized into chapters, with each chapter having many sub-chapters. R code scripts have been provided, alongside thorough explanations of the code and images showing the expected output upon the execution of every script.

Full Books

  • Harmonic Superspace
  • What’s Where on Earth Atlas
  • Music Business Handbook and Career Guide
  • Integrative Therapies in Rehabilitation
  • Records Management and Knowledge Mobilisation
  • World Windows 2 (Science): Seasons
  • Postnatal Care
  • Fuzzy Analysis of Driving Crisis
  • Runway Dust
  • Frontiers of the Afterlife
  • Introduction to Microfabrication
  • Service Life Prediction of Polymeric Materials
  • Life in Occupied Guernsey
  • The Nature of Statistical Learning Theory
  • Stone Fox Bride
  • England and the Crusades, 1095-1588
  • Chin Na in Groundfighting
  • Teaching Embodied
  • Biographies of Homeopathic Physicians, Volume 17
  • North Shore Railway [microform]
©2023 Amoscassidy Author | Design: Newspaperly WordPress Theme